Chaperonins are ubiquitous ATP-dependent macromolecular complexes that promote the folding of proteins into thermodynamically stable native conformations. Here, I would like to introduce a bacteriophage EL encoded chaperonin, a drastically different form of chaperonin phylogenetically related to group I and functions in a novel way suggesting the emergence of a different form of chaperonin mediated protein-folding mechanism.

The striking feature of this chaperonin is that the primary sequence exhibits a naturally occurred point mutation (A to T) in the highly conserved ATP-binding region that is conserved in all the known chaperonins. This change in the residue leads to co-chaperonin independent way of protein-folding mechanism with radically different nucleotide-binding conformations. The structural, biochemical and functional investigations reveal that ATP binds co-operatively to both rings and that a misfolded substrate functions as a trigger for progression along the different conformational states. The protein-folding cycle begins with substrate binding followed by ATP hydrolysis and expansion of the internal chamber resulting in ring separation and ring closure. Formation of a single-ring structure with an expanded internal chamber allows ϕEL to fold β-galactosidase, a 116-kDa protein that is not folded by the $E. coli$ GroEL chaperonin.

Collectively, the architecture and nucleotide-binding cycle of the ϕEL chaperonin showcases an excellent model for evaluating the already existing bioinformatics tools and software. Furthermore, the data also can be used in building new bioinformatics software for homology modeling, building a database with valuable information about the interaction between the subunits, point mutation studies, etc.

Bell Hall 130A
Friday, February 27, 2015, 10:30 AM

For more information, please contact the Colloquium Chair, Dr. Chuan “River” Xiao, at cxiao@utep.edu or 915.747.8657.